276

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-22, NO. 3, MARCH 1974

Time-Domain Osci"ographic Microwave Network Analysis

Using Frequency-Domain Data

MARION E. HINES, reLLow, 1EEE, AND HAROLD E. STINEHELFER, SR., SENTOR MEMBER, IEEE

Abstract—Oscillographic plots of various time-domain responses
of microwave networks are generated by computer simulation, based
upon measurements taken in the frequency domain. Frequency-
response data are obtained with a computer-controlled automatic
network analyzer, this information is processed in an associated com-
puter, and selected time-domain responses are plotted immediately
on an z—y recorder. Voltage versus time responses have been simu-
lated for various excitations including impulse, step, and pulse-
modulated RF waves. When impedance data are used, the plots are
interpretable as from a time-domain reflectometer with high pre-
cision, high sensitivity, and high resolving power. As an oscillograph
the rise time may be as short as 0.04 ns. In transmission 70 dB or
more loss can be tolerated. In reflection measurements, the results
are interpretable for discrete discontinuities with 40 dB or more
return loss, and with separations on the order of 1 cm in space.

In certain types of circuits, time-domain data can be used to
reconstruct the frequency~-domain response data in an approximate
manner for separate parts of a network without separate measure-
ments. In this manner, the interference of generator, load, and
transducer mismatches can be substantially reduced.

I. InTRODUCTION

T IS WELL KNOWN that specific time-domain
responses of a linear network can be predicted theo-
retically if its frequency-response characteristics are fully
known. Fourier series transformations are commonly
used for such determinations. With the advent of the
modern computer-controlled network analyzer, it has
become possible to measure the frequency response of
networks from essentially zero frequency—18 GHz, at a
large number of frequencies in a short time, and to store
the data for further computer processing. Using an as-
sociated computer and an z—y recorder, a program has
been prepared which performs the necessary transforma-
tions so that a graph can be immediately drawn which
simulates an oscillographic display of the network’s
response, in time, to various standard input excitations.
In our work, we have used the impulse response, the
step response, and an RF pulse. We have found that the
resulting instrument is highly precise and the curves may
be interpreted quantitatively. The sensitivity is also great,
allowing the measurement of highly lossy networks and
the resolution of transmission-line discontinuities with a
high return loss. As an oscillograph, a rise time of ~40 ps
has been observed.
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In our laboratory we have used a Hewlett-Packard
model 8542B Automatic Network Analyzer, a Hewlett-
Packard model 9600E Data Acquisition RTE System, and
a Hewlett-Packard model 7210A Digital 2—y Recorder.

Typically, 81 frequency points can be measured at
adjacent harmonically related frequencies, which allows a
somewhat detailed graph to be drawn over an extended
time interval.

The Fourier series approach is well known and straight-
forward. A standard periodic input waveform is assumed,
repetitive at a relatively low “fundamental” frequency.
Network measurements are taken at integer harmonies
of this fundamental. The input wave function is ““shaped”
to accomodate the frequency range of the measurements
by simulating the effect of a Gaussian ‘‘roll-off” filter,
and the resultant waveform is resolved into its harmonic
spectral components. Each component is modified ac-
cording to the response of the network at that frequency.
The resultant set of frequency components are then
summed to obtain the output time function.

Here we have made use of modern computer technology
and automatic measuring equipment to generate and
process large amounts of data, which in the past required
too much labor for ordinary laboratory application.

To simulate an impulse response, the input time func-
tion starts as a periodic sequence of § functions, but is
modified by the Gaussian roll-off filter which effectively
modifies the pulse shape into that of a sequence of
Gaussian pulses of finite width.

For the step response, an input square wave is similarly
modified; the Gaussian filter effectively rounding off the
leading and trailing edge discontinuities, providing a
finite rise time and fall time with little overshoot. In the
case of the RF pulse, we begin with ideal § functions, but a
bandpass Gaussian filter is simulated which has the effect
of generating a sequence of short RF pulses with a
Gaussian envelope. In each case, these input spectral
components are subsequently modified by the network
response and summed to obtain the simulated output
waveform.

In our laboratory, we have found that a major applica-
tion is its use as a téme-domain reflectometer for diagnostic
study of wide bandwidth transmission networks. In this
mode of use, input impedance measurements are taken,
converted into reflection coefficient form, and stored.
After subsequent time-domain transformation, the oscillo-
graphic curve represents the reflected waveform which
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would result from excitation of the network by a sequence
of widely spaced short Gaussian pulses. From any re-
flective discontinuity within the network, an equivalent
short pulse would be returned to the input, delayed in
time by the round-trip path length involved. In the
graphs produced by this technique, the effects of small
discrete discontinuities are easily discernable, in single
or multiple form, with their locations resolvable within a
fraction of a centimeter. The character and magnitude of
the discontinuities are interpretable in terms of the
magnitude and shape of the reflected pulses observed.
The effects observed are similar to what one would expect
from a radar with a transmitter pulse of spatial length
shorter than 1. em, and an oscillographic display of
equivalent rise and fall times. Under some circumstances,
reflection points with return loss greater than 40 dB have
been resolved.

We have also found the technique useful in obtaining the
frequency response of the reflection coefficient of one part
of a network which is separated by short line lengths from
other parts of the network which also cause reflections on
the input line. For example, an imperfect uncalibrated
transducer may lie between the measuring equipment and
the network of interest, and it is desired to eliminate
the perturbing effects of this transducer. We have found
that the time-domain responses of various parts of a
network sometimes can be separated in this way. If now
all but one part is ignored, a transformation can be
used in reverse to reconstruct the frequency-domain
data of that part with little interference from the others.
The technique is useful but is subject to errors due to
multiple reflections, and from loss of data due to sup-
pression of parts of the plot.

Applications of Fourier series principles to time-domain
reflectometry in recent years include an elegant technique
of Hollway [1] and Somlo [2] who used specialized
equipment with external data processing. Robinson
el al. [3] describe an approach which is very similar to
ours for radar echo studies of objects in space. Nicolson
et al. [4] describe highly advanced techniques for direct
oscillographic study of transmission and reflection of very
short pulses. A time-domain reflectometer as a com-
mercial instrument (HP-1818A) is available for direct
oscillographic display of reflective waves from networks
using a repetitive step-function input wave. Our tech-
nique has a time resolution comparable to these other
approaches. Its sensitivity for measuring weak reflections
is comparable to the techniques of [171-[3], being similarly
limited by interfering reflections from the microwave
instrumentation,” and from adjacent reflections in the
device being studied. Our approach offers a significant
advantage in signal to noise and jitter, compared to the
direct oscillographic techniques. There is an additional
advantage of versatility in that the response to many dif-
ferent waveforms may be simulated with ease, both in
transmission and reflection. A still further advantage is
that the curves are directly interpretable, quantitatively,
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without the zero-level drift and zero ambiguity of the
sampling oscillograph.

II. MaTHEMATICAL Basis

Ideally, a Fourier series involves an infinite number of
terms. The equations below are useful to represent a con-
tinuous or discontinuous voltage waveform V.(t) of a
periodic nature, of period T s:

Veo ol 2mnt . 2mnt
Vi) = > + ;5_::1 [Vo,, C08 - + Ve sin —T-] (1)

9 i 27ni

Ve = — Vi(t) cos ——dt (2)
T —(T/2} T
2 T 2mnt

V=2 [ Vi@ sin T 3)
TJ_gp T

In (1), an input waveform V,(t) is presented as the
sum of an infinite series of sines and cosines of harmoni-
cally related frequencies. The harmonic voltages V., and
Vn are determinable by the integrations of (2) and (3).
This wave is periodic, repeating after an interval of T s
with a fundamental frequency fi = 1/7 Hz. Each fre-
quency term in (1) is an integer harmonic of f; at various
frequencies nf;, 0 < n < «.

To determine the time-domain response of an electrical
network to an arbitrary input waveform V.(t), we first
determine its Fourier series coefficients V., and Vi,
using (2) and (3). Equation (1) indices that the input
wave consists of a sum of a set of sine and cosine voltage
waves of an infinite number of frequencies, each an
integer harmonic of the fundamental, the nth harmonic
having a frequency nfi = n/T Hz. In a linear network
there is no interaction between different applied fre-
quencies 8o that we can linearly superpose the effects of
many simultaneous inputs of different frequencies.
Therefore, if we determine the complex voltage-response
ratio S, of the network for each harmonic frequency nf,
we can obtain the response set of harmonie voltages and
add the result to obtain the time function of the output
wave. If

(4)

where S, is the magnitude of S,, then the two nth terms
of the output Fourier series become

- 2ant
Von = Sa {Vc,. cos (2—’;“ + on> 4 Vi sin (% + 0)}

S. = 8, exp j0,

(5)

and the total output response waveform becomes
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(Note that the de response S, is always real but may be
positive, negative, or zero.)

Infinite series cannot be summed in a computer. We can
deal only with a finite number of harmonics, typically 81
in the present system, where we have a usable frequency
range from ~ 110 MHz to 18 GHz. When a Fourier series
for a discontinuous waveform is truncated after a finite
number of terms, the reconstructed wave shows over-
shoots and ringing transients preceding and following each
discontinuity. Pulse shaping is a well-known practice for
reducing such effects, and has been used for many years
in pulse systems. Various methods are known. Here we
have simulated the effect of a pulse-shaping filter. Begin-
ning with the Fourier series for ideal impulses or square
waves, we modify the magnitude of each term with a
Gaussian roll-off characteristic. For a baseband system
using harmonic numbers from 0 through N, each nth
harmonic is attenuated by the factor K,

K, = exp {—— (ln\@)(%)j s

where P is the fractional 3-dB bandwidth, that is, the
fraction of the total band for which the attenuation is
less than 3 dB. Similarly, for a bandpass case, where
harmonic numbers from N; to N, are used and both lower
and higher harmonic frequencies are suppressed, the
function chosen is

o, _ . 2
K, = exp {— ( ln\/é)(g‘**———lsz_v_z PN]:G)} ,

ngnSNz.

0<n<N (7)

(8)

Evaluating the initial Fourier series coefficients and
applying the roll-off function gives the following input
coeflicients to be used in (6). The factor H normalizes the
peak value to 1.0, in cases 1) and 3) of the following.

1) Baseband Impulse:

1 2
Vm=ﬁexp[—(1n\/§)<l?n—)], for0 <n <N

Ven =0
N n \2

H = El exp {— (ln\/§)<}]—v>} + 0.5.

2) Square Wave (Step Function):
Ve =1
Vew =0, forn > 0
Ven = n_27r exp [—— ( ln\/ﬁ)(PLNY] ,

fornodd,0 <n <N

Ve = 0, for n even.

8) For the RF Pulse (Bandpass Network):

Vcnzo, fOI"rL<N1,n>N2
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Generation of the time-domain response for these cases
involves evaluation of the responses of the network, S,
and 6,, for each harmonie, the evaluation of (6) at many
closely spaced instants of time sufficient for the graph
desired, and plotting the results. The summations in (6)
are, of course, limited to the harmonic numbers used in
the measurements.

We have commonly used 81 frequency components
which may or may not include zero frequency. For ex-
ample, the fundamental may be 225 MHz, and all multi-
ples up to 18 GHz may then be used, including zero.
Alternatively, for the 2-4-GHz band, the fundamental
may be 25 MHz, the lowest harmonic number N; will be
80, the highest N, will be 160, and the center N, will be
120. In the first case, we can plot over a time range of
4.44 ns corresponding to a round-trip path length of
1.33 m, with a time resolution on the order of 0.05 ns,
corresponding to a radar location distance resolution of
~A0.75 em. For narrower bandwidth plots, the available
time span is increased and the resolution is degraded in
inverse proportion.

Fig. 1 shows four sets of transmission response curves
computed with our program for a simple network con-
gisting of a 10-cm length of lossless TEM line. We as-
sumed S, = 1, 8, = —20 mnfi/c. These curves are ac-
curate replicas of the presumed input waves, delayed
0.33 ns. Without the pulse-shaping filter, we observe
excessive ringing and overshoot. The filter degrades the
rise time and resolution, but reduces the ringing and
overshoot to give a more easily interpreted display, with
reduced interference between separate closely spaced
responses. The half-height width of the impulse function
is 33 ps unfiltered and 48 when filtered. The 10-90-percent
rise time of the filtered step response is seen to be ~40 ps
and ~25 ps for the unfiltered case.

These curves are mathematical constructions represent-
ing hypothetical input wave functions. These hypo-
thetical waves are totally band limited to the frequency
range of the network measurements with a predetermined,
discrete, and finite set of spectral components. Therefore,
the networks’ response to these assumed tnput waves can be
accurately determined in detail by these techniques. The
aceuracy is limited only by the precision of the network
measurements, by roundoff errors of the computer, and
by the plotting technique used. However, it must be
recognized that the input wave is not a single impulsive
event, but a rounded and periodically repetitive approxi-
mation of one. The time-response curves generated are
fully valid with this interpretation. In many cases, the
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Fig. 1. Time-domain transmission responses for a 10-cm lossless. TEM line, computéd with our program, uging 81
harmouics of the Fourier series, but with theoretical frequency response data, S, = exp(—j2wnl/Tc), where ! = 10
em, T = 1/Fy, ¢ =8 X 10" cm/s. These are undistorted replicas of four examples of input time-functions, delayed
0.333 ns. Responses of this shape are obtained with simple flat-band gain or loss, and as reflections from resistive
discontinuities in TEM lines. The Gaussian filter suppresses the long ringing transients, but degrades the rise time. (a)
Impulse response. (b) Step response (vising edge of a square wave). (c) RF pulse for the 2-18-GHz band. (d) RF

" pulse for the 9-18-GHz band.

results can also be interpreted - safely as simulating the
response to a single pulse of this shape. However; if the
network involves transient phenomena with time constants
comparable to or larger than the repetition period T,
then the results must be interpreted with care. For ex-
ampie, large bypass capacitors or de return inductors in
the network may introduce long exponential transients
for single-pulse excitation which will be masked when
periodic excitation is used. Similarly, the effects of a
high-Q microwdve resonance can be suppressed in this
technique unless the harmonic frequency components
used are sufficiently closely spaced to delineate the re-
sponse characteristics of this resonance. ‘

~ When a time-domain oscillographic plot shows distinet
and separate responses which can be identified with
distinct and separate segments of the network, it is
sometitmes possible to reconstruct a set of frequency-
domain data from the time-domain plot for each such
separable network segment. The technique is approximate
and subject to errors where there is significant interaction
between these parts. The method is straightforward for
reflection analysis. In transmissioni studies; the method

is not usually applicable, The technique involves modi—
fication and reinterpretation of (1)—(3). -
Here the bdseband impulse response V,(t) is used,
eliminating the roll-off filter by setting P > 1. A new
function V,(t) is defined, V. (t) = Vo(t) for Ti <t < T,
V.(t) =0 for —T/2 <t < Ty, and for To <1 < T/2
where Ti and 7T, are the time limits éncompassing the re-
flection response of the network segmeént being studied.

” v R ) k ¢
V, (@) =~ I; + El [Vcn cos 2»%(—!— Ven sin 27,;? ] 9)
H [T Sent ,
V_N_% V() cos o (10)
H (" omnt
on 2 V. (@) sin—z,i dt. (11)

T1

The frequency responses S, are

: ~ Vin '
Su = (Veu? + V)12 <~axp»(jtan*1 V—) (12)

cn
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~ where

- ;_1 <T, < Ty < 2ZY

To use these equations, we must assume that the time
“response between T, and T is identifiable as coming from
a distinet segment of the network, that it is complete
within the range Ty — T, and that it has not been modi-
fied by other network segments. In the integrations of
(10) and (11) we artifically restrict the range of inte-
gration to Ty — T, thereby assuming that the response is
zero outside of this range. Errors are introduced because
the transients of any such response are not, in general,

zero outside of such a restricted range, nor are the transi- -

ents from other network segments  totally negligible
within the range of integration. Further error can be in-
troduced if the waveform from the network segment being

studied has been distorted in transmission through other .

segments. The technique is useful in suppressing the
interference of a good but not perfect transmission-line
transducer between the measuring equipment and the
network under study. If may also be used to determine the
frequency-domain reflections from a poor input trans-
ducer which is followed by interfering reflections from
subsequent network segments. No detailed. analysis has
been made to estimate the magnitude of the errors in-
troduced by transient cutoff effects.

III. Some InLusTRATIVE EXAMPLES

Fig. 2 shows the time-domain response of the reflections
of an input impulse, applied to a 10-cm air line, and a 10-
dB pad, followed by a short circuit, all with precision
APC-7 connectors. The plot uses centimeters as abscissa
rather than time, representing the distance to the point
of reflection.

The first. reflections in the range 0-3 ecm represent
residual calibration errors plus the first connector. We
see next a reflection ~45 dB down at the next connector
pair, at 9-11-cm distance. These are followed by larger
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Fig. 2. Time-domain reflectometer response of the network shown,
for impulse excitation. Response peaks are unambiguously and
quantitatively associated with individual reflection discon-
tinuities as indicated. Abscissa is labeled as centimeters to the
point of reflection.
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reflections —39 dB below the input due to pad imper-
fections. The large negative peak is the reflection from the
short eircuit, 20 dB down due to two passages through the
pad. ‘
Fig. 3 shows the original frequency-response data and
reconstructions of the frequency responses of various
segments of this network. Reconstruction from the range
9-30 cm shows the combined effects of the pad and the
short. The rapid undulations in the upper band have been
eliminated as they were caused by interference with the
calibration errors. Still further separation for range
9-12 em shows the effects of the connector. For the range
16—20 e¢m, we have the effects of the short circuit, at-
tenuated by the pad, but without the interference of the
pad’s separate reflections.

Fig. 4 shows several reflection conditions for an ad-
justable shunt capacitor across the line (HP 874B), at
a distance of 9 em. The capacitance settings are 0.0,
0.02, 0.04, and 0.08 pF, giving various reflection mag-
nitudes. It will be seen that there is an observable re-
flection even at zero setting, unexplained here. The re-
flections in the range 16—22 em are from a 10-dB pad and
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Fig. 3. Original frequency-response data (VSWR) and recon-

structed frequency responses from fractional time-period seg-

ments of the time-domain responses of Fig. 2. Curves are marked -

‘with the centimeter (time) range used for integration by the
computer.
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Fig. 4. Time-domain irhpulse reflections from an adjustable shunt
capacitor (HP 874B) across a coaxial line, for 0.0-, 0.02-, 0.04-,
and 0.08-pF settings.
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its connectors. A frequency-domain reconstruction for the
0.08-pF case is shown in Fig. 5. Here we have eliminated
the interference due to the connectors, the pad, and
the calibration errors, leaving a smooth, nearly linearly
rising characteristic as expected.

Fig. 6 shows the impulse-reflection response of a special
test fixture consisting of a 10-cm length of coaxial line,
followed by a transducer connecting directly to the open
end of a section of ceramic microstrip line of low im-
pedance, estimated to be 10 Q. The microstrip line was
shorted to ground at its far end, and was approximately
4 cm long. The ceramic has a dielectrie constant of ~9,
giving an apparent electrical length of ~12 em.

We see here the simulated effect of a short pulse in-
duced on the low-impedance line, reflecting back and
forth several times. The input positive pulse is first re-
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Fig. 5. Frequency-domain data for the 0.08-pF response of Fig. 4,
using the range 5.5-16 cm for the limits of integration in recon-
struction. o
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Fig. 6. Impulse-reflection response of a special demonstration test
fixture, consisting of 10 cm of coaxial line, a transducer, and a
4-cm length of low-impedance microstrip line, shorted at the far
end. Its electrical length is ~12 c¢m. Multiple reflection peaks ap-
pear as the simulated impulse travels back and forth along the
microstrip line, releasing a fraction of its energy each time it
reaches the transducer. The polarity of the impulse reverses each
time it is reflected at the shorted end. The display is periodic,
repeating at an apparent electrical distance of ~136 em (9.09
ns). Also shown is the reflection response of the open-circuited
input line when the test fixture was removed. This represents the
mput wave. ’
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flected by the low-impedance mismatch as a negative
pulse, at 17-em distance. A positive pulse is injected into
the low-impedance line. It travels to the far *(shorted)
end and returns as a negative pulse, a part of which
escapes back to the source as a second negative pulse at
an apparent distance of 29 cm. This pulse is largely re-
flected again, remaining negative because the microstrip
line sees a high-impedance mismatch. This pulse travels
again down the line, is inverted again at the short into a
positive pulse which again reaches the transducer, allow-
ing a smaller positive pulse to escape at ~41 cm. The
process now repeats again and again, inverting the pulse
at each reflection from the far end, growing smaller each
time as some energy escapes at the input, and some is
lost in line attenuation. At 146 cm, the process starts
again with a new input pulse. ' :

Fig. 7 shows the reflection response of the same fixture
to an input square wave. The gross features of this curve
may be explained in a manner quite similar to the above.
At first glance, this appears to be an inverted and de-
layed square wave, as expected from a short circuit, with
a smaller decaying square-wave transient superposed.
The decaying transient is clearly the result of multiple
reflections on the low-impedance line. However, there is
further fine structure on this curve needing further ex-
planation. In the middle of the range 17-27 cm, for ex-
ample, there is a small subsidiary. step which can be ex-
plained as a remnant of the decaying transient from the
next previous step-down, one-half of the period earlier.
Here we have an example of a network with a time
constant comparable to the cycle period 7. Here we must
not interpret the square-wave response as being equivalent
to the step. response, even in the periods immediately
following the input steps which are applied. However, if
we were to use a sufficiently longer period 7', with a lower
fundamental frequency fi = 1/7, these overlapping
transient effects could be suppressed, allowing a relatively
alcurate simulation of the step response using the square
wave. To retain the same time resolution, however, more
harmonics would then be required.

SQUARE. WAVE RESPONSE OF TEST FIXTURE
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Fig. 7. Square-wave reflection response of the test fixture for
Fig. 6, and the response of the input open circuit when the fixture
was removed.
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IV. CoNcLUSIONS

Useful oscillographic response plots of a microwave
network have been obtained by computer simulation,
using frequency-domain data measured with a computer-
controlled network analyzer. The technique has a short
time resolution, is highly sensitive, and .provides quan-
titative results useful in a variety of ways. A major ap-
plication is in the analysis of impedance data at the input
of transmission networks, where it serves as a quanti-
tatively interpretable time-domain reflectometer. It may
also be used to measure small reflection coefficients of
individual parts of multiple-section networks, which are
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physically inseparable both in the time domain and the
frequency domain.
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De-EmbCC!CIing and Unterminating

RONALD F. BAUER, uEMBER, 1EEE, AND PAUL PENFIELD, JR., FELLOW, IEEE

Abstract—De-embedding is the process of deducing the im-
pedance of a device under test from measurements made at a dis-
tance, when the electrical properties of the intervening structure
are known. Unterminating is the process of deducing the electrical
properties of the intervening structure from a series-of measurements
with known embedded devices. The mathematical steps necessary
for de-embedding and unterminating are reviewed, and a technique
is presented fof unterminating with theoretically redundant meas-
urements in order fo minimize the effect of experimental erfors.

I. INTRODUCTION

T miecrowave frequencies it is often impossible to
directly measure the impedance (or admittance or
reflection coefficient) of devices such as diodes or transis-
tors. Instead, measurements are made at, and referred to,
sorhe reference plane physically removed from the device.
The device is then said to be “embedded” in the inter-
vening structure. If the device under test is a two-terminal
device, then the “embedding network” may usefully be
regarded as a two-port network 9%z, with the measurement
plane at the input and the device under test terminating

the output. This is shown in Fig. 1.
A related problem is that of characterizing, for a working
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Fig. 1. Normal measurement situation. Characteristics of the
device under test can only be measured as they appear outside
the embedding network g.

circuit, the region surrounding a device such as a diode.
For example, one might wish to know the impedance seen
by the diode, or the coupling between the diode and the
circuit input or output. It is often impossible to make
measurements at the physical location of the device, so
what is needed is a characterization of the structure be-
tween the device and a convenient measurement plane.
Again it is useful to consider the device as “embedded’ in
the intervening structure, which in the case of a diode may
be regarded as a two-port network 9. Fig. 1 is again
relevant. :

To fix ideas in this paper, we shall consider mainly
impedance (instead of admittance or reflection coef-
ficient) measurements, and call the device under test a
“diode.” A

There are two distinet problems. One is, given the
measured impedance at the input of the two-port network,
to deduce the impedance of the diode. This process,
known as “de-embedding,” is straightforward, once the
embedding network is known, and is discussed in Section
II. The other more difficult problem is to characterize the



