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Titne-Dornain Oscillographic Microwave Network Analysis

Usin9 Frequency-Domain Data

MARION E. HINES, FELLOW, IEEE, AND HAROLD E. STINEHELFER, SR., SENIOR MEMBER, IEEE

A~stract—Oscillographic plots of various time-domain responses
of microwave networks are generated by computer simulation, based
upon measurements taken in the frequency domain. Frequency-
response data are obtained with a computer-controlled automatic
network analyzer, thk information is processed in an associated com-
puter, and selected time-domain responses are plotted immediately
on an z–y recorder. Voltage versus time responses have been simu-
lated for various excitations includlng impulse, step, and pulse-
modulated RF waves. When impedance data are used, the plots are

interpretable as from a time-domain reflectometer with high pre-

cision, high sensitivity, and high resolving power. As an oscillograph

the rise time may be as short as 0.04 ns. In transmission 70 dB or

more loss can be tolerated. In reflection measurements, the results

are interpretable for discrete discontinuities with 40 dB or more

return loss, and with separations on the order of 1 cm in space.

In certain types of circuits, time-domain data can be used to

reconstruct the frequency-domain response data in an approximate

manner for separate parts of a network without separate measure-

ments. In this manner, the interference of generator, load, and

transducer mismatches can be substantially reduced.

I. INTRODUCTION

I T IS WELL KNOWN that specific time-domain

responses of a linear network can be predicted theo-

retically if its frequency-response characteristics are fully

known. Fourier series transformations are commonly

used for such determinations. With the advent of the

modern computer-controlled network analyzer, it has

become possible to measure the frequency response of

networks from essentially zero frequency–18 GHz, at a

large number of frequencies in a short time, and to store

the data for further computer processing. Using an as-

sociated computer and an x-y recorder, a program has

been prepared which performs the necessary transforma-

tions so that a graph can be immediately drawn which

simulates an oscillographic display of the network’s

response, in time, to various standard input excitations.

In our work, we have used the impulse response, the

step response, and an RF pulse. We have found that the

resulting instrument is highly precise and the curves may

be interpreted quantitatively. The sensitivity is also great,

allowing the measurement of highly lossy networks and

the resolution of transmission-line discontinuities with a

high return loss. As an oscillograph, a rise time of ~40 ps

has been observed.
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In our laboratory we have used a Hewlett-Packard

model 8542B Automatic Network Analyzer, a Hewlett-

Packard model 9600E Data Acquisition RTE System, and

a Hewlett-Packard model 7210A Digital z~ Recorder.

Typically, 81 frequency points can be measured at

adj scent harmonically related frequencies, which allows a

somewhat detailed graph to be drawn over an extended

time interval.

The Fourier series approach is well known and straight-

forward. A standard periodic input waveform is assumed,

repetitive at a relatively low “fundamental” frequency.

Network measurements are taken at integer harmonics

of this fundamental. The input wave function is “shaped”

to accommodate the frequency range of the measurements

by simulating the effect of a Gaussian “roll-off” filter,

and the resultant waveform is resolved into its harmonic

spectral components. Each component is modified ac-

cording to the response of the network at that frequency.

The resultant set of frequency components are then

summed to obtain the output time function.

Here we have made use of modern computer technology

and automatic measuring equipment to generate and

process large amounts of data, which in the past required

too much labor for ordinary laboratory application.

To simulate an impulse response, the input time func-

tion starts as a periodic sequence of 8 functions, but is

modified by the Gaussian roll-off filter which effectively

modifies the pulse shape into that of a sequence of

Gaussian pulses of finite width.

For the step response, an input square wave is similarly

modified; the Gaussian filter effectively rounding off the

leading and trailing edge discontinuities, providing a

finite rise time and fall time with little overshoot. In the

case of the RF pulse, we begin with ideal 6 functions, but a

bandpass Gaussian filter is simulated which has the effect

of generating a sequence of short RF pulses with a
Gaussian envelope. In each case, these input spectral

components are subsequently modified by the network

response and summed to obtain the simulated output

waveform.

In our laboratory, we have found that a major applica-

tion is its use as a timedomain rejlcctomefer for diagnostic

study of wide bandwidth transmission networks. In this

mode of use, input impedance measurements are taken,

converted into reflection coefficient form, and stored.

After subsequent time-domain transformation, the oscillo-

graphic curve represents the reflected waveform which
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would result from excitation of the network by a sequence

of widely spaced short Gaussian pulses. From any re-

flective discontinuity y within the network, an equivalent

short pulse would be returned to the input, delayed in

time by the round-trip path length involved. In the

graphs produced by thk technique, the effects of small

discrete discontinuities are easily discernible, in single

or multiple form, with their locations resolvable within a

fraction of a centimeter. The character and magnitude of

the discontinuities are interpretable in terms of the

magnitude and shape of the reflected pulses observed.

The effects observed are similar to what one would expect

from a radar with a transmitter pulse of spatial length

shorter than 1, cm, and an oscillographic display of

equivalent rise and fall times. Under some circumstances,

reflection points with return loss greater than 40 dB have

been resolved.

We have also found the technique useful in obtaining the

frequency response of the reflection coefficient of one part

of a network which is separated by short line lengths from

other parts of the network which also cause reflections on

the input line. For example, an imperfect uncalibrated

transducer may lie between the measuring equipment and

the network of interest, and it is desired to eliminate

the perturbing effects of this transducer. We have found

that the time-domain responses of various parts of a

network sometimes can be separated in this way. If now

all but one part is ignored, a transformation can be

used in reverse to reconstruct the frequent y-domain

data of that part with little interference from the others.

The technique is useful but is subject to errors due to

multiple reflections, and from loss of data due to sup-

pression of parts of the plot.

Applications of Fourier series principles to time-domain

reflectometry in recent years include an elegant technique

of Hollway [1] and Somlo [2] who used specialized

equipment with external data processing. Robinson

et al. [3] describe an approach which is very similar to

ours for radar echo studies of objects in space. Nicolson

et al. [4] describe highly advanced techniques for direct

oscillographic study of transmission and reflection of very

short pulses. A time-domain reflectometer as a com-

mercial instrument (HP-1818A ) is available for direct

oscillographic display of reflective waves from networks

using a repetitive step-function input wave. Our tech-

nique has a time resolution comparable to these other

approaches. Its sensitivity for measuring weak reflections

is comparable to the techniques of [1 ]–[3], being similarly

limited by interfering reflections from the microwave

instrumentation, ” and from adj scent reflections in the

device being studied. Our approach offers a significant

advantage in signal to noise and jitter, compared to the

direct oscillographic techniques. There is an additional

advantage of versatility in that the response to many dif-

ferent waveforms may be simulated with ease, both in

transmission and reflection. A still further advantage is

tb at the curves are directly interpretable, quantitatively,

without the zero-level drift and zero ambiguity of the

sampling oscillograph.

II. MATHEMATICAL BASIS

Ideally, a Fourier series involves an infinite number of

terms. The equations below are useful to represent a con-

tinuous or discontinuous voltage waveform Vi(t) of a

periodic nature, of period T s:

[

27rnt 21rnt
V;(t) = ~+ ~ l’. .cos~+ V,. sin —

T 1 (1)
. %=1

T/2

V,n= ~ /
27rnt

vi (t) Cos
T –(T/2)

~ dt

T12

vs. = ~ \ Vi(t) sin
27rnt

T -(T/2)

~ dt. (3)

In (1), an input waveform Vi(t) is presented as the

sum of an infinite series of sines and cosines of harmoni-

cally related frequencies. The harmonic voltages V.. and

V.. are determinable by the integrations of (2) and (3).

This wave is periodic, repeating after an interval of T s

with a fundamental frequency jl = 1/T Hz. Each fre-

quency term in (1) is an integer harmonic of fl at various

frequencies njl, O s n < @.

To determine the time-domain response of an electrical

network to an arbitrary input waveform Vi(t), we first

determine its Fourier series coefficients V,. and V..

using (2) and (3). Equation (1) indices that the input

wave consists of a sum of a set of sine and cosine voltage

waves of an infinite number of frequencies, each an

integer harmonic of the fundamental, the nth harmonic

having a frequency nfl = n/T Hz. In a linear network

there is no interaction between different applied fre-

quencies so that we can linearly superpose the effects of

many simultaneous inputs of different frequencies.

Therefore, if we determine the complex voltage-response

ratio 8. of the network for each harmonic frequency nfl,

we can obtain the response set of harmonic voltages and

add the result to obtain the time function of the output

wave. If

& = i% exp j$. (4)

where % is the magnitude of J.%, then the two nth terms

of the output Fourier series become

‘on= ‘nPcncOs(%+e~)+ vsnsh(%+’*)l

5)

and the total output response waveform becomes

. . . f c“ r++en)Vo(t)=; so+ is v Cos

‘Vsnsin(%+’n)“)
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(Note that the de response S’Ois always”real but maybe

positive, negative, or zero.)

Infinite series cannot be summed in a computer. We can

deal only with a finite number of harmonics, typically 81

in the present system, where we have a usable frequency

range from * 110 MHz to 18 GHz. When a Fourier series

for a discontinuous waveform is truncated after a finite

number of terms, the reconstructed wave shows over-

shoots and ringing transients preceding and following each

discontinuity. Pulse shaping is a well-known practice for

reducing such effects, and has been used for many years

in pulse systems. Various methods are known. Here we

have simulated the effect of a pulse-shaping filter. Begin-

ning with the Fourier series for ideal impulses or square

waves, we modify the magnitude of each term with a

Gaussian roll-off characteristic. For a baseband system

using harmonic numbers from O through N, each nth

harmonic is attenuated by the factor K.

‘n=ex++al, O<n<N‘7)
where P is the fractional 3-dB bandwidth, that is, the

fraction of the total band for which the attenuation is

less than 3 dB. Similarly, for a bandpass case, where

harmonic numbers from Nl to NZ are used and both lower

and higher harmonic frequencies are suppressed, the

function chosen is

N,< n < N,. (8)

Evaluating the initial Fourier series coefficients and

applying the roll-off function gives the following input

coefficients to be used in (6). The factor H normalizes the

peak value to 1.0, in cases 1 ) and 3) of the following.

1 ) Baseband Impulse:

“n=+ex+(’n%%)l‘OrO<n<N
V.n= o

‘= :lexp(-(lnw)(fi)}+05
9) Square Wave (Step Function):

Vm=l

V,n = o, forn>O

fornodd, O<n~N
vs. = o, for n even.

3) For the RF Pulse (Bandpass Network):

Vcn= o, forn<Nl, n>N,

Generation of the time-domain response for these cases

involves evaluation of the responses of the network, &

and on, for each harmonic, the evaluation of (6) at many

closely spaced instants of time sufficient for the graph

desired, and plotting the results. The summations in (6)

are, of course, limited to the harmonic numbers used in

the measurements.

We have commonly used 81 frequency components

which may or may not include zero frequency. For ex-

ample, the fundamental may be 225 MHz, and all multi-

ples up to 18 GHz may then be used, including zero.

Alternatively, for the 2–4-GHz band, the fundamental

may be 25 MHz, the lowest harmonic number N1 will be

80, the highest Ng will be 160, and the center N. will be

120. In the first case, we can plot over a time range of

4.44 ns corresponding to a round-trip path length of

1.33 m, with a time resolution on the order of 0.05 ns,

corresponding to a radar location distance resolution of

zO.75 cm. For narrower bandwidth plots, the available

time span is increased and the resolution is degraded in

inverse proportion.

Fig. 1 shows four sets of transmission response curves

computed with our program for a simple network con-

sisting of a 10-cm length of Iossless TEM line. We as-
sumed & = 1, 8. = —20 mjJc. These curves are ac-

curate replicas of the presumed input waves, delayed

0.33 ns. Without the pulse-shaping filter, we observe

excessive ringing and overshoot. The filter degrades the

rise time and resolution, but reduces the ringing and

overshoot to give a more easily interpreted display, with

reduced interference between separate closely spaced

responses. The half-height width of the impulse function

is 33 ps unfiltered and 48 when filtered. The 10–90-percent

rise time of the filtered step response is seen to be x40 ps

and M2.5 ps for the unfiltered case.

These curves are mathematical constructions represent-

ing hypothetical input wave functions. These hypo-

thetical waves are totally band limited to the frequency

range of the network measurements with a predetermined,

discrete, and finite set of spectral components. Therefore,

the networks’ response to these assumed input waves can be

accurately determined in detail by these techniques. The

accuracy is limited only by the precision of the network

measurements, by roundoff errors of the computer, and

by the plotting technique used. However, it must be

recognized that the input wave is not a single impulsive

event, but a rounded and periodically repetitive approxi-

mation of one. The time-response curves generated are

fully valid with this interpretation. In many cases, the
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Fig. 1. Time-domain transmission responses for a 10-cm lossless TEM line, computed with our program, using 81
harmonics of the Fourier series, but with theoretical frequency response data, S. = exp ( –j2.Tnt/Tc), where 1, = ,10
cm, 2’ = 1 /F1, c = 3 x 1010cmls. These are undistotied raplicas of four examples of input We-!unctions, de!ayed
0.333 ns. Responsesof this shape are obtained with simple flat-band gain or loss, and as reflections from remtwe
discontinuities in TEM lines. The Gaussian filter suppressesthe long ringing transients, but degradesthe Yisetime. (a)
Impulse response. (b) Step response (rising edge of a square wave). (c) RF pulse for the 2-18-G~z band. (d) RF
pulse for the 9–18-GHz band.

,,
results can also be interpreted safely as simulating the

response to a single pulse of this shape, Howeverj if the

network involves transient phenomena with time constants

comparable to or larger than the repetition period T,

then the results must be interpreted with care. For ex-

ample, large bypass capacitors or de return inductors in

the network may introduce long exponential transients

for single-pulse excitation which will be masked when

periodic excitation is used. Similarly, the effects of A

high-Q microwave resonance can be suppressed in this

technique unless the harmonic frequency components

used are suiliciently closely spaced to delineate the re-,,.
sponse characteristics of this resonance.

When a time-domain oscillographic plot shows distinct

and separate responses which can be identified with

distinct and separate segments of the network, it is

sometimes possible to reconstruct a set of frequency-

domain data from the time-domain plot for each such

separable network segment. The technique is approximate

and subject to errors where there is significant interaction

between these parts. The method is straightforward for

redection analysis. In transmission studies, the method

is not usually applicable, The technique involves modi-

fication and reinterpretation of (1)-(3).

Here the baseband irnp@e response V.(~) is used>

eliminating the roll-off filter by setting P >> 1. A new

function V,(t) is defined, V, (t), = VO(t) for T1 ~ t S T2,

V,(t)= (i for –T/2 < t < Tl, and for Tz < t <,T/2j

where T1 and T2 are the time limits encompassing the re-

flection response of the network segment being stuched.

[
v,(t) = : + 5 v,. Cos

2irnt 27rnt
~ + V,. sin ~ 1 (9)

.=1

(lo)

The frequency responses & are

& = (V.nz + V.nz )1’z ex@
[’tan-’z) ’12)
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where

To use these equations, we must assunae that the time

response between T1 and Tt is identifiable as coming from

a distinct segment of the network, that it is complete

within the range TI ~ Tz, and that it has not been modi-

fied by other network segments. In the integrations of

(10) and (11 ) we artificially restrict the range of inte-

grtition to TI 4 TZ, thereby assuming that the response is

zero outside of this range. Errors are introduced because

the transients of any such response are not, in general,

zero outside of such a restricted range, nor are the transi-

ents from other network segments totally negligible

within the range of integration. I’urther error can be in-

troduced if the waveform from the network segment being

studied has been distorted in transmission through other

segments. The technique is useful in suppressing the

interference of a good but not perfect transmission-line

transducer between the measuring equipment and the

network under study. If may also be used to determine the

frequency-domain reflections from a poor input trans-

ducer which is followed by interfering reflections from

subsequent network segments. No detailed. analysis has

been made to estimate the magnitude of the errors in-

troduced by transient cutoff effects.

III. SOME ILLUSTRATIVE EXAMPLES

Fig. 2 shows the time-domain response of the reflections

of an input impulse, applied to a 10-cm air line, and a 10-

dB pad, followed by a short circuit, all with precision

APC-7 connectors. The plot uses centimeters as abscissa

rather than time, representing the distance to the point

of reflection.

The first reflections in the range O–3 cm represent

residual calibration errors plus the first connector. We

see next a reflection N45 dB down at the next connector

pair, at 9–1 l-cm dktance. These are followed by larger

Tim DOMAIN10 CMLINE + 10 EIBPAJl+ SHOR1

,Ocm ,0.8
AIR LINE P/ul SIKRT

NETWORK

ANALY2E4

WC-7

L REFERENCE
FUNE

u
:
%

~1’ I,. -20 #B—

CENTIMETERSITIME=.= NAW-sazen)

Fig. 2. Time-domain reflectometer response of the network shown,
for impulse excitation. Response peaks are unambiguously and
quantitatively associated with individual reflection dkcon-
tinuities as indicated. Abscissa is labeled as centimeters to the
point of reflection.

reflections —39 dB below the input due to pad imper-

fections. The large negative peak is the reflection from the

short circuit, 20 dB down due to two passages through the

pad.

Fig. 3 shows the original frequency-response data and

reconstructions of the frequency responses of various

segments of this network. Reconstruction from the range

9–30 cm shows the combined effects of the pad and the

short. The rapid undulations in the upper band have been

eliminated as they were caused by interference with the

calibration errors. Still further separation for range

9–12 cm shows the effects of the connector. For the range

16–20 cm, we have the effects of the short circuit, at-
tenuated by the pad, but without the interference of the

pad’s separate reflections.

Fig. 4 shows several reflection conditions for an ad-

justable shunt capacitor across the line (HP 874B ), at

a distance of 9 cm. The capacitance settings are 0.0,

0.02, 0.04, and 0.08 pF, giving various reflection mag-

nitudes. It will be seen that there is an observable re-

flection even at zero setting, unexplained here. The re-

flections in the range 16–22 cm are from a 10-dB pad and

WCON$H7UCWFREQUENCYDOMAIN10 CMLINE + 10 DB + SHORT
:_
.

CRIGINAL

/\ I

Fig. 3. Original frequency-response data. (VSWR) and recon-
structed frequency responses from fractional time-period seg-
ments of the time-domain responsesof Fig. 2. Curves are marked
with the centimeter (time) range used for integration by the
computer.
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Fig. 4. Timedomain impulse reflections from an adjustable shunt
capacitor (HP 874B) across a coaxial line, for 0.0-, 0.02-, 0.04,
and 0.08-pF settings.
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its connectors. A frequency-domain reconstruction for the

0.08-pF case is shown in Fig. 5. Here we have eliminated

the interference due to the connectors, the pad, and

the calibration errors, leaving a smooth, nearly linearly

rising characteristic as expected.

Fig. 6 shows the impulse-reflection response of a special

test fixture consisting of a 10-cm length of coaxial line,

followed by a transducer connecting directly to the open

end of a section of ceramic microstrip line of low im-

pedance, estimated to be 10 0 The microstrip line was

shorted to ground at its far end, and was approximately

4 cm long. The ceramic has a dielectric constant of x9,

giving an apparent electrical length of x12 cm.

We see here the simulated effect of a short pulse in-

duced on the low-impedance line, reflecting back and

forth several times. The input positive pulse is first re-

PREcISIoN cwKIToR t4XiURED AND RECONSTRUCTED
~ -.
:1

, ,!

Fig. 5. Frequency-domain data for the 0.08wF response of Fig. 4,
using the range 5.5–16 cm for the limits of integration in recon-
struction.

l?ig. 6. Impulse-reflection response of a special demonstration test
fixture, consisting of 10 cm of coaxial line, a transducer, and a
4cm length of low-impedance microstrip hne, shorted at the far
end. Its electrical length is ~12 cm. Multiple refledion peaks ap-
pear as the simulated impulse travels back and forth along the
microstrip line, releasing a fraction of its energy each time it
reaches the transducer. ‘l’he polarity of the impulse reverses each
time it is reflected at the shorted end. The display is periodic,
repeating at an apparent electrical distance of N136 cm (9.09
us). Also shown is the reflection response of the open-circuited
input line when the test fixture was removed. This represents the
input wave.

fleeted by the low-impedance mismatch as a negative

pulse, at 17-cm distance. A positive pulse is injected into

the low-imp~dance line. It travels to the far (shorted)

end and returns as a negative pulse, a part of wKlch

escapes back to the source as a second negative pulse at

an apparent distance of 29 cm. This pulse is largely re-

flected again, remaining negative because the microstrip

line sees a high-impedance mismatch. This pulse travels

again down the line, is inverted again at the short into a

positive pulse which again reaches the transducer, allow-

ing a smaller positive pulse to escape at =41 cm. The

process now repeats again and again, inverting the pulse

at each reflection from the far end, growing smaller each

time as some energy escapes at the input, and some ;S

lost in line attenuation. At 146 cm, the process starts

again with a new input pulse.

Fig. 7 shows the reflection response of the same fixture

to an input square waye. The gross features of this curve

may be explained in a manner quite similar to the above.

At first glance, this appears, to be an inverted and de-

layed square wave, as expected from a short circuit, with

a smaller decaying square-wave transient superposed.

The decaying transient is clearly the result of multiple

reflections on the low-impedance line. However, there is

further fine structure on this curve needing further ex-

planation. In the middle of the range 17–27 cm, for ex-

ample, there is a small subsidiary. step which can be ex-

plained as a remnant of the decaying transient from the

next previous step-down, one-half of the period earlier.

Here we have an example of a network with a time

constant comparable to the cycle period T. Here we must

not interpret the square-wave response as being equivalent

to the step response, even in the periods immediately

following the input steps which are applied. However, if

we were to use a sufficiently longer period T, with a lower

fundamental frequency fl = l/T, these overlapping

transient effects could be suppressed, allowing a relatively
a~cmate sim~ation of the step responseusing the square

wave. To retain the same time resolution, however, more

harmonics would then be required.

SQU+WIEWAVERESPONSEOF TESTFIXTURE
~
<T fl =110 MM

DC .CX1 HbR!&WC5

I

~ 1, 1 1 1 1 1 I 1
?-50 so 75 Iw

CENTIif;RS
I25 1% lr5

Fig.. 7. Square-wave reflection response of the test iixture for
Fig. 6, and the response of the input open circuit when the fixture
was removed.
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Iv.

Useful oscillographic

CONCLUSIONS

response plots of a microwave—
network have been obtained by computer simulation,

using frequency-domain data measured with a cornputer-

ccmtrolled network analyzer. The technique has a short

time resolution, is highly sensitive, and.provides quan-

titative results useful in a variety of ways. A major ap-

plication is in the analysis of impedance data at the input

of transmission networks, where it serves as a quanti-

tatively interpretable time-domain reflectometer. It may

also be used to measure small reflection coefficients of
individual parts of multiple-section networks, wlich are

physically inseparable both in the time domain and the

frequency domain.
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De-Embedding and Unterminating

RONALD ~. BAUER, MEMBER, IEEE, AND PAUL PENFIELD, JR., FELLOW, IEEE

Afmfnrcf—De-embedding is the process of deducing the im-

pedance of a device under test from measqrernents made at a dis-

tance, when we electrical properties’ Qf the intervening structure

are known. Untermin’sting is the process of deducing the electrical

properties of the intervening structure from a seriesof measurements .ea,,,:&=

with knqwn embedded devices. “The mathematical steps necessary Fig. 1.
for de-e~bedding and unterminating are reviewed, and a technique

Normal measurement situation. Characteristics of the
device und~r test can only be measured as they appear outside

is presented for unterminating with theoretically redundant meas- the embeddmg network WE.

weme~ts in order to minimize the effect of experimental errors.

I. INTRODUCTION

AT microwave frequencies it is often impossible to

directly measure the impedance (or admittance or

reflection coefficient) of devices such as diodes or transis-

tors. Instead, measurements are made at, and referred to,

some reference plane physically removed from the device.

The device is then said to be “embedded” in the inter-

vening structure. If the device under test is a two-terminal

device, then the !’embedding network” may usefully be

regarded as a two-port network ~E, with the measurement

plane at the input and the device under teet terminating

the output. This is shown in Fig. 1.

A related problem is that of characterizing, for a working
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circuit, the region surrounding a device such as a diode.

For example, one might wish to know the impedance seen

by the diode, or the coupling between the diode and the

circuit input or output. It is often impossible to make

measurements at the physical location of the device, so

what is needed is a characterization of the structure be-

tween the device and a convenient measurement plane.

Again it is useful to consider the device as ‘(embedded” in

the intervening structure, which in the case of a diode may

be regarded as a two-port network %E. Fig. 1 is again

relevant.

To fix ideas in thk paper, we shall consider mainly

impedance (instead of admittance or reflection coef-

ficient) measurements, and call’ the device under test a

“diode.”

There are two distinct problems. One is, given the

measured impedance at the input of the two-port network,

to deduce the impedance of the diode. This process,

known as “de-embedding,” is straightforward, once the

embedding network is known, and is discussed in Section

II. The other more difficult problem is to characterize “the


